Abstract
We introduce an unfolded moduli space of connections, which is an algebraic relative moduli space of connections on complex smooth projective curves, whose generic fiber is a moduli space of regular singular connections and whose special fiber is a moduli space of unramified irregular singular connections. On the moduli space of unramified irregular singular connections, there is a subbundle of the tangent bundle defining the generalized isomonodromic deformation produced by the Jimbo-Miwa-Ueno theory. On an analytic open subset of the unfolded moduli space of connections, we construct a non-canonical lift of this subbundle, which we call an unfolding of the unramified irregular singular generalized isomonodromic deformation. Our construction of an unfolding of the unramified irregular singular generalized isomonodromic deformation is not compatible with the asymptotic property in the unfolding theory established by Hurtubise, Lambert and Rousseau which gives unfolded Stokes matrices for an unfolded linear differential equation in a general framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.