Abstract

We consider recognizable trace rewriting systems with level-regular contexts (RTL). A trace language is level-regular if the set of Foata normal forms of its elements is regular. We prove that the rewriting graph of a RTL is word-automatic. Thus its first-order theory is decidable. Then, we prove that the concurrent unfolding of a finite concurrent automaton with the reachability relation is a RTL graph. It follows that the first-order theory with the reachability predicate (FO[Reach] theory) of such an unfolding is decidable. It is known that this property holds also for the ground term rewriting graphs. We provide examples of finite concurrent automata of which the concurrent unfoldings fail to be ground term rewriting graphs. The infinite grid tree (for each vertex of an infinite grid, there is an edge from this vertex to the origin of a copy of the infinite grid) is such an unfolding. We prove that the infinite grid tree is not a ground term rewriting graph. We have thus obtained a new class of graphs for with a decidable FO[Reach] theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.