Abstract
Endophilin, which is a member of the Bin-amphiphysin-Rvs (BAR) domain protein superfamily, contains a homodimeric N-BAR domain of a characteristic crescent shape. The N-BAR domain comprises a six-helix bundle and is known to sense and generate membrane curvature. Here, we characterize aspects of the unfolding mechanism of the endophilin A1 N-BAR domain during thermal denaturation and examine factors that influence the thermal stability of this domain. Far-UV circular dichroism (CD) spectroscopy was applied to monitor changes in the secondary structure above room temperature. The protein’s conformational changes were further characterized through Foerster resonance energy transfer and cross-linking experiments at varying temperatures. Our results indicate that thermal unfolding of the endophilin N-BAR is (minimally) a two-step process, with a dimeric intermediate that displays partial helicity loss. Furthermore, a thermal shift assay and temperature-dependent CD were applied to compare the unfolding processes of several truncated versions of endophilin. The melting temperature of the N-BAR domain decreased when we deleted either the N-terminal H0 helix or the unstructured linker of endophilin. This result suggests that these intrinsically disordered domains may play a role in structurally stabilizing the functional N-BAR domain in vivo. Finally, we show that single-site mutations can also compromise endophilin’s thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.