Abstract

Marketers use multidimensional unfolding to understand the relationship between customer preferences and product positioning through a joint display of customers and brands on a map. In today's information age, unfolding marketing data is challenging, as marketing data can be large in size and high-dimensional in nature. Moreover, the unfolding model is always subject to the curse of the degeneracy problem. We propose a new approach to unfold customer-by-brand transaction data and customer-by-customer network data in a reduced space. The proposed approach can recover the true configuration with reasonable accuracy, is scalable in terms of the number of estimated parameters, and can produce non-degenerate solution. We compare its performance with existing approaches by simulation experiments and real data analyses with interesting results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.