Abstract

The linear extrapolation method was used to evaluate the unfolding free energy changes (delta G degrees N-U) for phenylmethanesulfonyl chymotrypsin (PMS-Ct) at pH 6.0. The nonlinear least-squares fits of difference spectral data using urea and guanidinium chloride as denaturants gave identical values for delta G degrees N-U and delta epsilon degrees U, the latter being extinction coefficient differences between native and unfolded forms of the protein in the limit of zero concentration of denaturant. The independence of these parameters from the nature of solvent suggests strongly that they are characteristic properties of the protein alone. The delta G degrees N-U data at pH 6.0 and 4.0, which differ by more than 100-fold in stability of the protein, were incorporated into a thermodynamic cycle involving free energy changes for titration of native and unfolded PMS-Ct from pH 4.0 to 6.0. The purpose of the cycle was to test whether delta G degrees N-U obtained by use of the linear extrapolation method exhibits the characteristics required of a thermodynamic function of state. Within error, the thermodynamic cycle was found to accommodate the delta G degrees N-U quantities obtained at pH 4.0 and 6.0 for PMS-Ct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call