Abstract

Label propagation has proven to be a fast method for detecting communities in large complex networks. Recent developments have also improved the accuracy of the approach; however, a general algorithm is still an open issue. We present an advanced label propagation algorithm that combines two unique strategies of community formation, namely, defensive preservation and offensive expansion of communities. The two strategies are combined in a hierarchical manner to recursively extract the core of the network and to identify whisker communities. The algorithm was evaluated on two classes of benchmark networks with planted partition and on 23 real-world networks ranging from networks with tens of nodes to networks with several tens of millions of edges. It is shown to be comparable to the current state-of-the-art community detection algorithms and superior to all previous label propagation algorithms, with comparable time complexity. In particular, analysis on real-world networks has proven that the algorithm has almost linear complexity, O(m¹·¹⁹), and scales even better than the basic label propagation algorithm (m is the number of edges in the network).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call