Abstract

For piecewise-linear maps, the phenomenon that a branch of a one-dimensional unstable manifold of a periodic solution is completely contained in its stable manifold is codimension-two. Unlike codimension-one homoclinic corners, such “subsumed” homoclinic connections can be associated with stable periodic solutions. The purpose of this paper is to determine the dynamics near a generic subsumed homoclinic connection in two dimensions. Assuming the eigenvalues associated with the periodic solution satisfy [Formula: see text], in a two-parameter unfolding there exists an infinite sequence of roughly triangular regions within which the map has a stable single-round periodic solution. The result applies to both discontinuous and continuous maps, although these cases admit different characterizations for the border-collision bifurcations that correspond to boundaries of the regions. The result is illustrated with a discontinuous map of Mira and the two-dimensional border-collision normal form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.