Abstract

We propose an unfolding semantics for graph transformation systems in the double-pushout (DPO) approach. Mimicking Winskel’s construction for Petri nets, a graph grammar is unfolded into an acyclic branching structure, that is itself a (nondeterministic occurrence) graph grammar describing all the possible computations of the original grammar. The unfolding can be abstracted naturally to a prime algebraic domain and then to an event structure semantics. We show that such event structure coincides both with the one defined by Corradini et al. [3] via a comma category construction on the category of concatenable derivation traces, and with the one proposed by Schied [13], based on a deterministic variant of the DPO approach. This results, besides confirming the appropriateness of our unfolding construction, unify the various event structure semantics for the DPO approach to graph transformation.KeywordsGraph TransformationType GraphGraph GrammarInitial GraphTyping MorphismThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.