Abstract

It is well-known that hydrophobic effect play a major role in alcohol-protein interactions leading to structure unfolding. Studies with extremely alkaline cytochrome c (U(B) state, pH 13) in the presence of the first four alkyl alcohols suggests that the hydrophobic effect persistently overrides even though the protein carries a net charge of -17 under these conditions. Equilibrium unfolding of the U(B) state is accompanied by an unusual expansion of the chain involving an intermediate, I(alc), from which water is preferentially excluded, the extent of water exclusion being greater with the hydrocarbon content of the alcohol. The mobility and environmental averaging of side chains in the I(alc) state are generally constrained relative to those in the U(B) state. A few nuclear magnetic resonance-detected tertiary interactions are also found in the I(alc) state. The fact that the I(alc) state populates at low concentrations of methanol and ethanol and the fact that the extent of chain expansion in this state approaches that of the U(B) state indicate a definite influence of electrostatic repulsion severed by the low dielectric of the water/alcohol mixture. Interestingly, the U(B) ⇌ I(alc) segment of the U(B) ⇌ I(alc) ⇌ U equilibrium, where U is the unfolded state, accounts for roughly 85% of the total number of water molecules preferentially excluded in unfolding. Stopped-flow refolding results report on a submillisecond hydrophobic collapse during which almost the entire buried surface area associated with the U(B) state is recovered, suggesting the overwhelming influence of hydrophobic interaction over electrostatic repulsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.