Abstract

Program transformation is a technique for obtaining, starting from a program P, a semantically equivalent one, which is ”better” than P with respect to a particular goal. Traditionally, the main goal of program transformation was obtaining more efficient programs, but, in general, this technique can be used to produce programs written in a syntactic form satisfying some properties. Program transformation techniques have been extensively studied in the framework of functional and logic languages, where they were applied mainly to obtain more efficient and readable programs. All these works are based on the Unfold/Fold program transformation method developed by Burstall and Darlington in the context of their recursive equational language. The use of Unfold/Fold based transformations for concurrent languages is a relevant issue that has not yet received an adequate attention. In fact the existing proposals of transformations of concurrent programs are not based on a general Unfold/Fold transformation theory. The aim of this paper is to define such a theory for the concurrent calculus CCS and to prove it correct.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.