Abstract

The unfolded protein response (UPR) is a conserved adaptive reaction that increases cell survival under endoplasmic reticulum (ER) stress conditions. X-box-binding protein-1 (XBP-1) is a key transcriptional regulator of the UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The occurrence of chronic ER stress has been extensively described in neurodegenerative conditions linked to protein misfolding and aggregation. However, the role of the UPR in the CNS has not been addressed directly. Here we describe the generation of a brain-specific XBP-1 conditional KO strain (XBP-1(Nes-/-)). XBP-1(Nes-/-) mice are viable and do not develop any spontaneous neurological dysfunction, although ER stress signaling in XBP-1(Nes-/-) primary neuronal cell cultures was impaired. To assess the function of XBP-1 in pathological conditions involving protein misfolding and ER stress, we infected XBP-1(Nes-/-) mice with murine prions. To our surprise, the activation of stress responses triggered by prion replication was not influenced by XBP-1 deficiency. Neither prion aggregation, neuronal loss, nor animal survival was affected. Hence, this most highly conserved arm of the UPR may not contribute to the occurrence or pathology of neurodegenerative conditions associated with prion protein misfolding despite predictions that such diseases are related to ER stress and irreversible neuronal damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.