Abstract

Sulfoxides are widely recognized as probes for identifying and evaluating the generation and contribution of high-valent metals in advanced oxidation processes. However, this paper was surprising to find that the presence of sulfoxides selectively enhanced the degradation of specific pollutants in the Fe(II)/PS system. Represented by methyl phenyl sulfoxide (PMSO), scavenging experiments for active species showed that the presence of PMSO transformed the mechanism from radical dominated (55.60 %) to nonradical dominated (60.91 %), greatly improving the anti-interference ability of the system. Determining the concentration of Fe(Ⅱ) and total iron (Fetot) in solution revealed that the presence of PMSO improved the utilization efficiency of Fe(II) and PS by enhancing the redox reaction between Fe(II) and PS, and resulted in the generation of Fe(IV) more favorably than the generation of SO4·− and ·OH. Additionally, comparing the proven high-valent iron dominated Fe(II)/PI system with the free radical dominated Fe(II)/PS system of this paper, it was revealed that the selectively enhanced oxidation of PMSO specifically targets the free radical dominated system. Experiments have shown that the degradation of acetaminophen, ibuprofen, phenol, and p-chlorophenol was enhanced by PMSO, while the degradation of norfloxacin, primidone, chloramphenicol, sulfamethoxazole, p-nitrophenol, benzoic acid, and nitrobenzene was inhibited. Based on density functional theory (DFT) calculations, PMSO has a selectively enhanced degradation effect for organic pollutants with ionization potential (IP) below 8.66 eV, and vice versa, it has an inhibitory effect. The present study provides new insights into the contribution of sulfoxide to the assessment of high-valent metals and sheds new light on the mechanism of active species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.