Abstract
Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA). But its kinetics was often found to be slow in previous laboratory studies where high hydroxyl radical concentrations ([•OH]) were used. In this study, we performed heterogeneous oxidation experiments of several model OA systems under varied aging timescales and gas-phase [•OH]. Our results suggest that OA heterogeneous oxidation may be 2-3 orders of magnitude faster when [•OH] is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding and prediction of atmospheric OA aging and composition evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.