Abstract

Nematodes are considered excellent models for understanding fundamental aspects of neuron function. However, nematodes are less frequently used as models for examining the evolution of nervous systems. While the habitats and behaviors of nematodes are diverse, the neuroanatomy of nematodes is often considered highly conserved. A small number of nematode species greatly influences our understanding of nematode neurobiology. The free-living species Caenorhabditis elegans and, to a lesser extent, the mammalian gastrointestinal parasite Ascaris suum are, historically, the primary sources of knowledge regarding nematode neurobiology. Despite differences in size and habitat, C. elegans and A. suum share a surprisingly similar neuroanatomy. Here, we examined species across several clades in the phylum Nematoda and show that there is a surprising degree of neuroanatomical variation both within and among nematode clades when compared to C. elegans and Ascaris. We found variation in the numbers of neurons in the ventral nerve cord and dye-filling pattern of sensory neurons. For example, we found that Pristionchus pacificus, a bacterial feeding species used for comparative developmental research had 20% fewer ventral cord neurons compared to C. elegans. Steinernema carpocapsae, an insect-parasitic nematode capable of jumping behavior, had 40% more ventral cord neurons than C. elegans. Interestingly, the non-jumping congeneric nematode, S. glaseri showed an identical number of ventral cord neurons as S. carpocapsae. There was also variability in the timing of neurodevelopment of the ventral cord with two of five species that hatch as second-stage juveniles showing delayed neurodevelopment. We also found unexpected variation in the dye-filling of sensory neurons among examined species. Again, sensory neuron dye-filling pattern did not strictly correlate with phylogeny. Our results demonstrate that variation in nematode neuroanatomy is more prevalent than previously assumed and recommend this diverse phylum for future “evo-devo-neuro” studies.

Highlights

  • For the past 200 years, nematodes received significant attention from neurobiologists due to their relatively simple anatomy

  • In C. elegans, the ventral nerve cords (VNC) contains a series of 57 motorneurons lying between the retrovesicular ganglion (RVG) and the preanal ganglion (PAG) (Sulston, 1976; White et al, 1976)

  • We found that the P. pacificus ventral cord contained approximately 20% fewer VNC neurons than C. elegans (Table 1; Figure 3A) suggesting that the number of neurons does not strictly correlate with phylogeny

Read more

Summary

Introduction

For the past 200 years, nematodes received significant attention from neurobiologists due to their relatively simple anatomy (reviewed in Chitwood and Chitwood, 1938). Significant divergence in neuroanatomy exists between nematodes in basal clades (class Enoplea; formerly Adenophorea) and those in higher clades (class Chromadorea; formerly Secernentea) (Sulston and Horvitz, 1977; Gans and Burr, 1994; Malakhov, 1994). Within the higher clades (clades 8–12), which include C. elegans and other intensely studied species, the neuroanatomy is often considered highly conserved (Angstadt et al, 1989; Martin et al, 2002; Burr and Robinson, 2004; Kimber and Fleming, 2005; Hallem and Sternberg, 2008; Srinivasan et al, 2008)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call