Abstract

In terms of morphology, crustacean maxillipeds are hybrid appendages. They arise in anterior thoracic segments and display characteristics of both locomotory (thoracic) and feeding (gnathal) appendages. Maxillipeds are functionally integrated with the anterior gnathal appendages. Hox gene expression patterns and immunolabeling with the FP6.87 antibody, which detects conserved epitopes of UBX and ABD-A proteins, reveal that maxillipeds are consistently associated with a shift in the expression of the homeotic gene Ubx. Ubx transcription products or proteins only appear in thoracic segments with a typical locomotory thoracopod and are consistently absent in the maxilliped. This pattern is found in various crustaceans: the copepod Mesocyclops, the mysid Mysidium, the decapods Homarus and Periclimenes, the isopod Porcellio, and the amphipod Parhyale. In Parhyale, which possesses maxillipeds on the first thoracic segment, gene manipulation experiments have shown that a leg-like thoracic appendage can be recovered by mis-expressing Ubx in that segment and walking legs can be transformed into maxillipeds by Ubx-knockdown. This survey focuses on the expression of UBX/ABD-A proteins, studied using the FP6.87 antibody, in the larval stages of the mystacocarid crustacean Derocheilocaris remanei. Mystacocarids inhabit the intertidal meiofauna zone of sandy beaches and possess one pair of maxillipeds on the first thoracic segment. Strong UBX/ABD-A expression in the developing maxilliped makes Derocheilocaris unique among crustaceans. Our data might also show that the transformation from locomotory thoracopod to maxilliped cannot be accounted for by the mere presence or absence of UBX, because in mystacocarids, UBX is present in both kinds of limbs. The role of the other Hox gene known to be involved in this transformation, Sex combs reduced (Scr), is unclear. The results presented here may document a new example of a shift in Hox gene function in arthropods. The difference in UBX/ABD-A expression between D. remanei and the copepod maxillipeds is of particular interest because correspondences between the feeding apparatus-including the maxilliped-in mystacocarids and copepods have been suggested as being of phylogenetic significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call