Abstract
There are 440 operational nuclear reactors in the world, with approximately one-half situated along the coastline. This includes the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which experienced multiple reactor meltdowns in March 2011 followed by the release of radioactivity to the marine environment. While surface inputs to the ocean via atmospheric deposition and rivers are usually well monitored after a nuclear accident, no study has focused on subterranean pathways. During our study period, we found the highest cesium-137 (137Cs) levels (up to 23,000 Bq⋅m-3) outside of the FDNPP site not in the ocean, rivers, or potable groundwater, but in groundwater beneath sand beaches over tens of kilometers away from the FDNPP. Here, we present evidence of a previously unknown, ongoing source of Fukushima-derived 137Cs to the coastal ocean. We postulate that these beach sands were contaminated in 2011 through wave- and tide-driven exchange and sorption of highly radioactive Cs from seawater. Subsequent desorption of 137Cs and fluid exchange from the beach sands was quantified using naturally occurring radium isotopes. This estimated ocean 137Cs source (0.6 TBq⋅y-1) is of similar magnitude as the ongoing releases of 137Cs from the FDNPP site for 2013-2016, as well as the input of Fukushima-derived dissolved 137Cs via rivers. Although this ongoing source is not at present a public health issue for Japan, the release of Cs of this type and scale needs to be considered in nuclear power plant monitoring and scenarios involving future accidents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.