Abstract
Nanographene oxide (nGO) flakes-graphene oxide with a lateral size of ≈100nm or less-hold great promise for superior flux and energy-efficient nanofiltration membranes for desalination and precise ionic sieving owing to their unique high-density water channels with less tortuousness. However, their potential usage is currently limited by several challenges, including the tricky self-assembly of nano-sized flakes on substrates with micron-sized pores, severe swelling in aqueous solutions, and mechanical instability. Herein, the successful fabrication of a robust membrane stacked with nGO flakes on a substrate with a pore size of 0.22µm by vacuum filtration is reported. This membrane achieved an unprecedented water permeance above 819.1 LMH bar-1, with a high rejection rate of 99.7% for multivalent metal ions. The nGO flakes prepared using an electron beam irradiation method, have uniquely pure hydroxyl groups and abundant aromatic regions. The calculations revealed the strong hydrogen bonds between two nGO flakes, which arise from hydroxyl groups, coupled with hydrophobic aromatic regions, greatly enhance the stability of stacked flakes in aqueous solutions and increase their effective lateral size. The research presents a simple yet effective approach toward the fabrication of advanced 2D nanographene membranes with superior performance for ion sieving applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.