Abstract

Felix Klein in course of his study of the regular icosahedron and its symmetries encountered a highly symmetric configuration of $60$ points in ${\mathbb P}^3$. This configuration has appeared in various guises, perhaps post notably as the configuration of points dual to the $60$ reflection planes in the group $G_{31}$ in the Shephard-Todd list. In the present note we show that the $60$ points exhibit interesting properties relevant from the point of view of two paths of research initiated recently. Firstly, they give rise to two completely different unexpected surfaces of degree $6$. Unexpected hypersurfaces have been introduced by Cook II, Harbourne, Migliore, Nagel in 2018. One of unexpected surfaces associated to the configuration of $60$ points is a cone with a single singularity of multiplicity $6$ and the other has three singular points of multiplicities $4,2$ and $2$. Secondly, Chiantini and Migliore observed in 2020 that there are non-trivial sets of points in ${\mathbb P}^3$ with the surprising property that their general projection to ${\mathbb P}^2$ is a complete intersection. They found a family of such sets, which they called grids. An appendix to their paper describes an exotic configuration of $24$ points in ${\mathbb P}^3$ which is not a grid but has the remarkable property that its general projection is a complete intersection. We show that the Klein configuration is also not a grid and it projects to a complete intersections. We identify also its proper subsets, which enjoy the same property. \

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.