Abstract
For the first time the possibility of energy transfer from a triplet photosensitizer to chiral–photochromic fragments in photoactive cholesteric systems was demonstrated. For this purpose we prepared mixtures containing chiral–photochromic cholesteric copolymers with a triplet sensitizer—acrydine orange (AO). Chiral–photochromic groups in copolymers contain a C=C bond capable for undergoing E–Z isomerization during UV irradiation. All polymer mixtures form a chiral nematic phase displaying selective light reflection with λmax~650–1,000 nm depending on the structure and concentration of the chiral groups. Irradiation of mixtures by visible light (λ>450 nm) leads to a shift of the selective light reflection peak to a long-wavelength spectral region. This effect is associated with a decrease of anisometry of chiral–photochromic fragments in copolymers during their E–Z isomerization. It is important to emphasize, that chiral–photochromic side groups of copolymers do not absorb visible light themselves; therefore, the previously mentioned changes can be explained by the energy transfer from photoexcited AO molecules in the triplet state to isomerizable fragments. The study of the kinetics of this process revealed a rather unexpected phenomenon: after the first 60–80-min irradiation, the helix pitch of the supramolecular structure of the mixtures increases, but after successive irradiation the helix pitch decreases. The possible explanations of this phenomenon were suggested. It was demonstrated that these mixtures may be used for irreversible recording of optical information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.