Abstract

An essential component of planetary climatology is knowledge of the tropospheric temperature field and its variability. Previous studies of Jupiter hinted at periodic behavior that was non-seasonal, as well as dynamical relationships between tropospheric and stratospheric temperatures. However, these observations were made over time frames shorter than Jupiter's orbit or they used sparse sampling. We derived upper-tropospheric (300-mbar) temperatures over 40 years, extending those studies to cover several orbits of Jupiter, revealing unexpected results. Periodicities of 4, 7 8-9 and 10-14 years were discovered that involved different latitude bands and seem disconnected from seasonal changes in solar heating. Anti-correlations of variability in opposite hemispheres were particularly striking at 16, 22 and 30 degrees from the equator. Equatorial temperature variations are also anticorrelated with those 60-70 km above. Such behavior suggests a top-down control of equatorial tropospheric temperatures from stratospheric dynamics. Realistic future global climate models must address the origins of these variations in preparation for their extension to a wider array of gas-giant exoplanets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call