Abstract

DNA exhibits remarkable charge transfer ability, which is crucial for its biological functions and potential electronic applications. The charge transfer process in DNA is widely recognized as primarily mediated by guanine, while the contribution of other nucleobases is negligible. Using the tight-binding models in conjunction with first-principles calculations, we investigated the charge transfer behavior of homogeneous GC and AT pairs. We found that the charge transfer rate of adenine significantly changes. With overstretching, the charge transfer rate of adenine can even surpass that of guanine, by as much as five orders of magnitude at a twist angle of around 26°. Further analysis reveals that it is attributed to the turnover of the relative coupling strength between homogeneous GC and AT base pairs, which is caused by the symmetry exchange between the two highest occupied molecular orbitals of base pairs occurring at different twist angles. Given the high degree of flexibility of DNA in vivo and in vitro conditions, these findings prompt us to reconsider the mechanism of biological functions concerning the charge transfer in DNA molecules and further open the potential of DNA as a biomaterial for electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call