Abstract

Porous boron nitride (BN) nanorods, which were synthesized via a one-stage pyrolysis, exhibited excellent catalytic performance for organics' degradation via peroxymonosulfate (PMS) activation. The origin of the unexpected catalytic function of porous BN nanorods was proposed, in which non-radical oxidation driven by the defects on porous BN dominated the sulfamethoxazole degradation via the generation of singlet oxygen (1O2). The adsorption energy between PMS and BN was calculated via density functional theory (DFT), and the PMS activation kinetics were further investigated using an electrochemical methodology. The evolution of 1O2 was verified by electron spin resonance (ESR) and chemical scavenging experiments. The observed non-radical oxidation presented a high robustness in different water matrices, combined with a series of much less toxic intermediates. The used BN was easily regenerated by heating in air, in which the B-O bond was fully recovered. These findings provide new insights for BN as a non-metal catalyst for organics' degradation via PMS activation, in both theoretical and practical prospects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.