Abstract
The aim of this study was to determine whether extracellular nitric oxide levels in the hippocampus of freely moving animals were reduced by the administration of nitric oxide synthase (NOS) inhibitors via a microdialysis probe. Our results show that extracellular nitrite levels were increased following the infusion of N-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI), in the case of the latter, the response was biphasic. In contrast, infusion of both inhibitors together resulted in a substantial reduction in nitrite when compared to control. More predictably, the infusion of NMDA elicited an increase in extracellular nitrite levels. This effect was biphasic, the second phase occurring some 3 h after the drug infusion period had ended. When NMDA was infused in the presence of L-NAME, no agonist-induced increase in nitrite production was recorded, in fact nitrite levels were found to decline to below control values. There was no immediate increase in nitrite levels when NMDA was infused in the presence of 7-NI, although this may have been partially obscured by the biphasic effect of the inhibitor. It did appear, however, that the second phase of the NMDA-induced response was attenuated by 7-NI. No NMDA-evoked increase in nitrite was evident when the agonist was infused in the presence of a combination of both inhibitors. We have no clear explanation for the data presented here but suggest that up-regulated activity of particular NOS isoforms might compensate for the inhibition of the other by a mechanism yet to be elucidated. In addition, we propose that caution be exercised when interpreting results from in vivo microdialysis studies where NOS inhibitors are administered directly into the brain via a probe.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.