Abstract

Because water has a higher heat capacity than air, large bodies of water fluctuate in temperature more slowly than does the atmosphere. Marine temperature time series are 'redder' than atmospheric temperature time series by analogy to light: in red light, low-frequency variability has greater amplitude than high-frequency variability, whereas in white light all frequencies have the same amplitude. Differences in the relative importance of high-and low-frequency variability in different habitats affect the population dynamics of individual species and the structure of ecological communities. Population dynamics of individual species are thought to be dominated by low-frequency fluctuations, that is, to display reddened fluctuations. Here I report, however, that in eight nonlinear, iterative, deterministic, autonomous, discrete-time population models, some of which have been used to model real biological populations, the power spectral densities of chaotic trajectories are neither white nor reddened but are notably blue, with increasing power at higher frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.