Abstract
BackgroundAdhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. It has been suggested that Caenorhabditis elegans, which has a single β and two α integrins, might reflect the ancestral integrin complement. Investigation of the integrin repertoire of anthozoan cnidarians such as the coral Acropora millepora is required to test this hypothesis and may provide insights into the original roles of these molecules.ResultsTwo novel integrins were identified in Acropora. AmItgα1 shows features characteristic of α integrins lacking an I-domain, but phylogenetic analysis gives no clear indication of its likely binding specificity. AmItgβ2 lacks consensus cysteine residues at positions 8 and 9, but is otherwise a typical β integrin. In situ hybridization revealed that AmItgα1, AmItgβ1, and AmItgβ2 are expressed in the presumptive endoderm during gastrulation. A second anthozoan, the sea anemone Nematostella vectensis, has at least four β integrins, two resembling AmItgβ1 and two like AmItgβ2, and at least three α integrins, based on its genomic sequence.ConclusionIn two respects, the cnidarian data do not fit expectations. First, the cnidarian integrin repertoire is more complex than predicted: at least two βs in Acropora, and at least three αs and four βs in Nematostella. Second, whereas the bilaterian αs resolve into well-supported groups corresponding to those specific for RGD-containing or laminin-type ligands, the known cnidarian αs are distinct from these. During early development in Acropora, the expression patterns of the three known integrins parallel those of amphibian and echinoderm integrins.
Highlights
Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation
Analyses of the whole genome sequence of Caenorhabditis elegans [4,5] indicate that it has a single β subunit of the β1 type that is capable of associating with two α subunits, which confer specificity for either laminin- or RGD-containing ligands, and it has been suggested that this may reflect the ancestral state
Complete sequences were determined for cDNA clones corresponding to the other two integrin unigenes; comparative analyses indicated that an EST clone corresponding to a second β subunit (AmItgβ2) encodes a full length protein of 771 amino acids, whilst an α integrin EST clone lacked the 5' end of the open reading frame
Summary
Adhesion mediated through the integrin family of cell surface receptors is central to early development throughout the Metazoa, playing key roles in cell-extra cellular matrix adhesion and modulation of cadherin activity during the convergence and extension movements of gastrulation. Analyses of the whole genome sequence of Caenorhabditis elegans [4,5] indicate that it has a single β subunit of the β1 type that is capable of associating with two α subunits, which confer specificity for either laminin- or RGD-containing ligands, and it has been suggested that this may reflect the ancestral state. "Lower" animals are of particular significance in terms of understanding the ancestral state, but have not been extensively studied Both α and β integrin subunits have been identified in sponges [7,8,9], and cnidarians [7,10,11], but the extent of integrin diversity and the range of functions of these molecules in "lower" animals are unknown
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.