Abstract

IntroductionSignificant discrepancies between in vitro and in vivo binding of the muscarinic receptor ligand – 3H-labeled Quinuclidinyl Benzilate (QNB) – have been well documented. Discernable in vivo cerebellar [3H]QNB binding has been observed in mouse brain, despite the maximum number of binding sites (Bmax) being low. In order to understand this unique in vivo binding phenomenon, the binding of two muscarinic receptor ligands – [3H]QNB and N-[11C]methylpiperidyl Benzilate ([11C]NMPB) – were compared in vivo and in vitro in 3- and 8-week-old mice. MethodIn vitro binding parameters of [3H]QNB were determined using brain homogenates. The time course of radioactivity concentration (TACs) in the cerebral cortex and cerebellum was measured following injection of [3H]QNB and [11C]NMPB with or without 3 mg/kg of carrier QNB in 3- and 8 week old mice using a dual tracer administration technique. A graphical method was employed for the quantitative analysis of in vivo binding of these radioligands. ResultsIn vitro, the available number of binding sites for cerebral cortical muscarinic receptors increased by 17% during the developmental period studied. Paradoxically, in vivo, we observed a decrease of [3H]QNB binding in the cerebral cortex, while [11C]NMPB binding was markedly increased. In vivo saturation analysis of [3H]QNB in 3-week-old mice revealed an apparent positive cooperativity of binding in the cerebral cortex. ConclusionsOur results support the hypothesis that microenvironmental factors proximal to muscarinic receptors cause a local decrease in the cortical free-ligand concentration of [3H]QNB and that this ‘ligand barrier’ is modulated during brain development. Advances in knowledgeThe present study demonstrates that the combined use of radiolabeled QNB and NMPB has the potential to reveal the important effects of receptor microenvironmental factors on receptor function in the living brain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.