Abstract
Use of homogeneous catalysts poses the problem of their recovery at the end of the reaction. A possible strategy to circumvent this problem is to make the ligand part of a polymer with limited solubility. In this work, we investigated the immobilization of complexes of Ar-BIAN ligands (Ar-BIAN = bis(arylimido)acenaphthene). We employed 4,4′-methylene-bis(aniline) as an amine able to bridge two acenaphthene moieties. However, the obtained product was a mixture of short-chain oligomers. A ruthenium complex of this mixture (Oligo-BIAN) was indeed catalytically active in the model hydrogenation of nitrobenzene to aniline by CO/H2O but the complexes were too soluble in the reaction mixture to allow for an easy recovery. We thus further extended the molecular weight of Oligo-BIAN by polymerizing it with terephthaloyl chloride obtaining a polyamide (Poly-BIAN). The latter was insoluble in all solvents but its ruthenium complex was catalytically inactive in the model reaction. An deeper investigation, showed that coordination mode of monomeric Ar-BIAN ligands and Oligo-BIAN to [Ru(CO)3Cl2(THF)] is differs from that of Poly-BIAN. This result was completely unexpected and constitutes a general warning not to give for granted the coordination mode of a complex to a functionalized polymer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.