Abstract

Materials "design" is increasingly gaining importance in the solid-state materials community in general and in the field of magnetic materials in particular. Density functional theory (DFT) predicted the competition between ferromagnetic (FM) and antiferromagnetic (AFM) ground states in a ruthenium-rich Ti3Co5B2-type boride (Hf2MnRu5B2) for the first time. Vienna ab initio simulation package (VASP) total energy calculations indicated that the FM model was marginally more stable than one of the AFM models (AFM1), indicating very weak interactions between magnetic 1D Mn chains that can be easily perturbated by external means (magnetic field or composition). The predicted phase was then synthesized by arc-melting and characterized as Hf2Mn1-xRu5+xB2 (x = 0.27). Vibrating-scanning magnetometry shows an AFM ground state with TN ≈ 20 K under low magnetic field (0.005 T). At moderate-to-higher fields, AFM ordering vanishes while FM ordering emerges with a Curie temperature of 115 K. These experimental outcomes confirm the weak nature of the interchain interactions, as predicted by DFT calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call