Abstract

We report the conversion of a series of CNN–pincer–ruthenium complexes Ru(CNN)HCl(CO) to a CC-chelated form Ru(CC)(PR3)2H(CO) on reaction with sodium tert-butoxide and monodentate phosphines. When the phosphine is triphenylphosphine, cis-phosphine complexes form at room temperature, which convert to the trans isomer at elevated temperatures. When the phosphine is tricyclohexylphosphine, only the trans-phosphine isomer is observed. The CC-chelated complexes are active catalysts for the hydrogenation of esters, without the need for added base. The ligand structure–activity relationship in the series of CC-chelated complexes mirrors that in the precursor CNN-Ru complexes, potentially indicating a common catalytic mechanism. Density functional theory calculations establish a plausible mechanism for the CNN-to-CC rearrangement and demonstrate that this rearrangement is potentially reversible under the conditions of ester hydrogenation catalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call