Abstract
Genetic modification of key residues of photosystems is essential to identify functionally crucial processes by spectroscopic and crystallographic investigation; the required protein stability favours use of thermophilic species. The currently unique thermophilic photosynthetic model organism is the cyanobacterial genus Thermosynechococcus. We report the ability of Thermosynechococcus elongatus to assimilate organic carbon, specifically D-fructose. Growth in the presence of a photosynthesis inhibitor opens the door towards crucial amino acid substitutions in photosystems by the rescue of otherwise lethal mutations. Yet depression of batch-culture growth after 7 days implies that additional developments are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.