Abstract

The reaction of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with acenaphthylene and indene leads not only to the formation of the expected [2 + 2] diazetidine cycloadducts but also to unexpected 2:1 adducts of MeTAD with substrate. The structures of the products derived from acenaphthylene were confirmed by X-ray crystallography. A similar distribution of products was afforded from indene. The 2:1 adducts appear to derive from a diradical intermediate, the radical centers of which are strongly stabilized by the bridging urazoyl ring and benzylic delocalization. The triplet states of these diradical intermediates may be trapped via exposure to molecular oxygen to afford oxygen-containing adducts. Computational studies at the (U)B3LYP/6-31G* level provide additional support for the conclusions of our experimental work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call