Abstract
This paper studies unevenness in network properties on the social Semantic Web. First, we propose a two-step methodology for processing and analyzing social network data from the Semantic Web. Using the SPARQL query language, a derived RDF graph can be constructed that is tailored to a specific question. After a brief introduction to the notion of unevenness, this methodology is applied to examine unevenness in network properties of semantic data. Comparing Lorenz curves for different centrality measures, it is shown how examinations of unevenness can provide crucial hints regarding the topology of (social) Semantic Web data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.