Abstract

In the practical direction-finding systems, the accuracy and resolution of the direction of arrival (DOA) estimation are affected not only by the Gaussian noise and array size but also by hardware configuration imperfections, such as errors in element manufacturing and mounting. These impairments cause phase and amplitude errors in estimating the DOA of signal sources. To address this issue, this paper proposes to combine a U-shape deep neural network (UNet) with the multiple signal classification via the root of the polynomial (rootMUSIC) algorithm (so-called UNet-rootMUSIC) to improve the DOA estimation accuracy. In this approach, the UNet model plays a role in converting a covariance matrix of received signals containing phase and gain errors into a nearly perfect one of the ideal antenna array. The rootMUSIC algorithm is then employed to estimate the signal DOA based on the converted covariance matrix. The DOA estimation performance of the uniform linear array of eight elements with an inter-element distance of λ/2 is analyzed through experimental simulations. The simulation results demonstrate that our method can significantly reduce the root mean square error of DOA estimation compared to the conventional MUSIC, rootMUSIC, ESPRIT methods and two deep neural network-based angular classification methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.