Abstract

The under-filling defect is prone to occur in the forging of large-scale titanium alloy rib-web components (LTRC). A rigorous preform design with accurate volume distribution is required for a desirable LTRC. The unequal thickness billet (UTB) design divides the preform into multiple regions of varying thickness and can not only adjust the volume distribution effectively but also control forming defects with low cost and high efficiency. The purpose of this paper is to attain LTRC without any under-filling defects using the UTB methodology. Firstly, cross sections are extracted from a desirable LTRC so as to create the initial UTB according to the calculated neutral layer of material flow between ribs. Then a finite element (FE) model is established, using the Deform-3D software for the isothermal closed-die forging to study the material flow and die cavity filling. Finally, three schemes to modify the initial UTB are proposed for those areas where there is under-filling: (I) increase the number of regions in affected areas, (II) adjust the size parameters of the regions around affected areas, and (III) increase the thickness of the regions in affected areas. In conclusion, it is found that scheme I and scheme II are based on the constancy of volume principle and can be adopted if the distribution of the ribs on those affected areas is quite simple. However, scheme I increases the complexity of the UTB, so scheme II is preferred. Alternatively, if the distribution of ribs on those regions is more complicated, scheme III can be adopted. Although the volume of the UTB is increased slightly, all ribs can be completely filled, allowing the most accurate LTRC to be produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call