Abstract

The Candida albicans ALS (agglutinin-like sequence) family includes eight genes (ALS1 to ALS7, and ALS9) that share a common general organization, consisting of a relatively conserved 5' domain, a central domain of tandemly repeated sequence units, and a 3' domain of relatively variable length and sequence. To test the hypothesis that the cell-surface glycoproteins encoded by the ALS genes mediate contact between the fungal cell and host surfaces, a set of C. albicans mutant strains was systematically constructed, each lacking one of the ALS sequences. Phenotypes of the mutant strains were evaluated, primarily using adhesion assays. ALS9 is unique within the ALS family due to extensive allelic sequence variation within the 5' domain that may result in functional differences between proteins encoded by ALS9-1 and ALS9-2. Deletion of ALS9 significantly reduces C. albicans adhesion to human vascular endothelial cell monolayers. The mutation was complemented by reintegration of a wild-type copy of ALS9-2, but not ALS9-1, suggesting allelic functional differences. Complementation of the mutation with a gene fusion between the 5' domain of ALS9-2 and the tandem repeats and 3' domain of ALS9-1 also restored wild-type adhesion levels. Analysis of the als9Delta/als9Delta mutant phenotype in other assays demonstrated no significant difference from a control strain for adhesion to buccal epithelial cells or laminin-coated plastic plates. The als9Delta/als9Delta mutant did not show significant differences from the control for adhesion to or destruction of cells in the reconstituted human epithelium (RHE) disease model, or for cell-wall defects, germ-tube formation or biofilm formation in a catheter model. Analysis of ALS9 allelic frequency in a collection of geographically diverse clinical isolates showed a distinct preference for ALS9-2 allelic sequences, within both the 5' and the 3' domain of the ALS9 coding region. These data suggest greater selective pressure to maintain the ALS9-2 allele in C. albicans isolates and imply its greater relative importance in host-pathogen interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.