Abstract

OBJECTIVE. The purpose of this study is to investigate the predictive performance of machine learning (ML)-based unenhanced CT texture analysis in distinguishing low (grades I and II) and high (grades III and IV) nuclear grade clear cell renal cell carcinomas (RCCs). MATERIALS AND METHODS. For this retrospective study, 81 patients with clear cell RCC (56 high and 25 low nuclear grade) were included from a public database. Using 2D manual segmentation, 744 texture features were extracted from unenhanced CT images. Dimension reduction was done in three consecutive steps: reproducibility analysis by two radiologists, collinearity analysis, and feature selection. Models were created using artificial neural network (ANN) and binary logistic regression, with and without synthetic minority oversampling technique (SMOTE), and were validated using 10-fold cross-validation. The reference standard was histopathologic nuclear grade (low vs high). RESULTS. Dimension reduction steps yielded five texture features for the ANN and six for the logistic regression algorithm. None of clinical variables was selected. ANN alone and ANN with SMOTE correctly classified 81.5% and 70.5%, respectively, of clear cell RCCs, with AUC values of 0.714 and 0.702, respectively. The logistic regression algorithm alone and with SMOTE correctly classified 75.3% and 62.5%, respectively, of the tumors, with AUC values of 0.656 and 0.666, respectively. The ANN performed better than the logistic regression (p < 0.05). No statistically significant difference was present between the model performances created with and without SMOTE (p > 0.05). CONCLUSION. ML-based unenhanced CT texture analysis using ANN can be a promising noninvasive method in predicting the nuclear grade of clear cell RCCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call