Abstract
Computed tomography pulmonary angiography (CTPA) has been proposed to be diagnostic for pulmonary hypertension (PH) in multiple studies. However, the utility of the unenhanced CT measurements diagnosing PH has not been fully assessed. This study aimed to assess the diagnostic utility and reproducibility of cardiac and great vessel parameters on unenhanced computed tomography (CT) in suspected pulmonary hypertension (PH). In total, 42 patients with suspected PH who underwent unenhanced CT thorax and right heart catheterization (RHC) were included in the study. Three observers (a consultant radiologist, a specialist registrar in radiology, and a medical student) measured the parameters by using unenhanced CT. Diagnostic accuracy of the parameters was assessed by area under the receiver operating characteristic curve (AUC). Inter-observer variability between the consultant radiologist (primary observer) and the two secondary observers was determined by intra-class correlation analysis (ICC). Overall, 35 patients were diagnosed with PH by RHC while 7 patients were not. Main pulmonary arterial (MPA) diameter was the strongest (AUC 0.79 to 0.87) and the most reproducible great vessel parameter. ICC comparing the MPA diameter measurement of the consultant radiologist to the specialist registrar's and the medical student's were 0.96 and 0.92, respectively. Right atrial area was the cardiac measurement with highest accuracy and reproducibility (AUC 0.76 to 0.79; ICC 0.980, 0.950) followed by tricuspid annulus diameter (AUC 0.76 to 0.79; ICC 0.790, 0.800). MPA diameter and right atrial areas showed high reproducibility. Diagnostic accuracies of these were within the range of acceptable to excellent, and might have clinical value. Tricuspid annular diameter was less reliable and less diagnostic and was therefore not a recommended diagnostic measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.