Abstract
In this paper we compare the accuracy of unemployment rates forecasts of eight Central and Eastern European countries. The unobserved component models and seasonal ARIMA models are used within a rolling short-term forecast experiment as an out-of-sample test of forecast accuracy. We find that unemployment rates present clear unconditional asymmetry in three out of eight countries. Half the cases there is no difference between forecasting accuracy of the methods used in the study. In the remaining, a proper specification of seasonal ARIMA model allows to generate better forecasts than from unobserved component models. The forecasting accuracy deteriorates in periods of rapid upward and downward movement and improves in periods of gradual change in the unemployment rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Economic Research. Central and Eastern Europe
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.