Abstract

The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccase-producing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. Total reads could be assigned to 2,141 Operational Taxonomic Units (OTUs) belonging to 31 bacteria phyla and 2,904 OTUs of at least seven fungi phyla. The abundance of Planctomycetes, Actinobacteria, and Chloroflexi was higher in T. cuspidata var. nana and T. × media rhizospheres than in T. mairei rhizosphere (NF), while Acidobacteria, Proteobacteria, Nitrospirae, and unclassified bacteria were more abundant in the latter. Ascomycota and Zygomycota were predominant in NF, while two temperate Taxus rhizospheres had more unclassified fungi, Basidiomycota, and Chytridiomycota. The bacterial/fungal community richness and diversity were lower in NF than in other two. Three dye decolorizing fungal isolates were shown to be highly efficient in removing three classes of reactive dye, while two PAH-degrading fungi were able to degrade recalcitrant benzo[a]pyrene. The present studies extend the knowledge pedigree of the microbial diversity populating rhizospheres, and exemplify the method shift in research and development of resource plant rhizosphere.

Highlights

  • The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccaseproducing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains

  • The total number of 16S rRNA reads obtained from the 15 samples, after filtering chimeric sequences and mismatches, was 154,243, which were clustered into 2,141 operational taxonomic units (OTU) with at most 3% dissimilarity in nucleotide identity

  • ACE and Chao[1], the community richness index, of ZS and MD are comparable, and are higher than those of NF rhizosphere, implying that additional OTUs are likely present in NF, coverage estimates were very high for all samples (Table 1)

Read more

Summary

Introduction

The species variability and potential environmental functions of Taxus rhizosphere microbial community were studied by comparative analyses of 15 16S rRNA and 15 ITS MiSeq sequencing libraries from Taxus rhizospheres in subtropical and temperate regions of China, as well as by isolating laccaseproducing strains and polycyclic aromatic hydrocarbon (PAH)-degrading strains. The higher richness in the Taxus rhizosphere bacterial communities of the subtropical region was suggested, which could be tested by the high-throughput sequencing approaches. The knowledge of the microbial diversity of Taxus rhizospheres could facilitate the discovery of bacteria/fungi with strong biotransformation activity. The culture-independent approach, which can provide myriad diversity information, has not been applied in most Taxus species and relevant microbial communities, let alone the high-throughput sequencing platform

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call