Abstract

Properties of Pisot numbers have long been of interest. One line of questioning, initiated by Erdos, Joo and Komornik in (Bull Soc Math France 118:377–390, 1990), is the study of the set \(\Lambda _{m}(\beta )\) the spectrum of \(\beta \) and the determination of \(l^{m}(\beta )\) for Pisot number \(\beta \), where \(\Lambda _{m}(\beta )\) denotes the set of numbers having at least one representation of the form \(\omega =\varepsilon _{n} \beta ^{n}+\varepsilon _{n-1}\beta ^{n-1}+\cdots +\varepsilon _{1}\beta +\varepsilon _{0},\) such that the \(\varepsilon _{i}\in \{-m,\ldots ,0,\ldots ,m\}\), for all \(0\le i\le n\), and \(l^{m}(\beta )=\inf \{|\omega |:\omega \in \Lambda _{m},\omega \ne 0\}.\) In this paper, we consider \(\Lambda _{m}(\beta )\), where \(\beta \) is a formal power series over a finite field and the \(\varepsilon _{i}\) are polynomials of degree at most \(m\) for all \(0\le i\le n\). Our main result is to give a full answer in the Laurent series case, to an old question of Erdős and Komornik (Acta Math Hungar 79:57–83, 1998), as to whether \(l^{1}(\beta )=0\) for all non-Pisot numbers. More generally, we characterize the inequalities \(l^{m}(\beta )>0\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.