Abstract

In the frame of mathematical optimization procedures or parameter fitting the same problem, modeled with partial differential equations depending on a parameter has to be solved many times for different sets of parameters. The reduced basis method may be successful in this frame and recent progress have permitted to make the computations reliable thanks to a posteriori estimators and to extend the method to non linear problems thanks to the “magic points” interpolation. However, in an industrial context, it may not be possible to use the code (for example of finite element type that allows for evaluating the elements of the reduced basis) to perform all the “off-line” computations necessary for an efficient performance of the reduced basis method. We propose here an alternating approach based on a coarse grid finite element the convergence of which is accelerated through the reduced basis. To cite this article: R. Chakir, Y. Maday, C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.