Abstract

Silicene and germanene freestanding layers are usually described as a honeycomb lattice formed by two hexagonal sub-lattices presenting a height difference, namely the layer buckling. In this work, first-principles calculations show that silicene and germanene can be rippled at 0 K with various wavelengths, without any compressive strain of the layer. For germanene, the height difference between two Ge atoms from the same sub-lattice can be as high as 4.7 for an undulation length of 81 . The deformations are related to slight (lower than 1.7°) bond angle modifications, and the energy cost is remarkably low, lying between 0.1 and 0.8 meV per atom. These undulations modify the electronic structure, opening a gap of 15 meV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.