Abstract

Many geotechnical scenarios involve cavity unloading from a loaded state, particularly in pressuremeter tests, and the unloading data of pressuremeter tests has exceptional attraction as it is less disturbed by the insertion process. However, the analyses for continuous cavity loading and unloading (i.e., cavity initially experiences expansion and then contracts) in critical state soils are rarely studied. To this end, a novel semi-analytical solution based on the unified state parameter model for clay and sand (CASM) is proposed for the whole expansion-contraction of spherical and cylindrical cavities under undrained condition. The problem assumes that the cavity is unloaded after a monotonic loading stage, leading to plastic regions during both loading and unloading periods. The cavity response for the whole expansion-contraction process is investigated, with the total pressure and stress paths at the cavity wall presented and validated against numerical simulation. The developed solution is successfully implemented to interpret both loading and unloading data of pressuremeter tests. The undrained shear strength, in-situ effective horizontal stress and initial overconsolidation ratio are back analyzed by using a curve fitting method based on the proposed solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call