Abstract

AbstractOxynitrides are promising visible‐light‐responsive photocatalysts, but their structures are almost confined with three‐dimensional (3D) structures such as perovskites. A phase‐pure Li2LaTa2O6N with a layered perovskite structure was successfully prepared by thermal ammonolysis of a lithium‐rich oxide precursor. Li2LaTa2O6N exhibited high crystallinity and visible‐light absorption up to 500 nm. As opposed to well‐known 3D oxynitride perovskites, Li2LaTa2O6N supported by a binuclear RuII complex was capable of stably and selectively converting CO2 into formate under visible light (λ>400 nm). Transient absorption spectroscopy indicated that, as compared to 3D oxynitrides, Li2LaTa2O6N possesses a lower density of mid‐gap states that work as recombination centers of photogenerated electron/hole pairs, but a higher density of reactive electrons, which is responsible for the higher photocatalytic performance of this layered oxynitride.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.