Abstract

Undoped and nickel-doped zinc oxide thin films were deposited on sodalime glass substrates by utilizing dip coating and ultrasonic spray pyrolysis deposition techniques. In both cases zinc acetate and nickel acetylacetonate were used as zinc precursor and nickel dopant source, respectively. XRD analysis confirms the ZnO wurtzite structure with (002) as the preferential orientation.SEM studies show the formation of two types of morphologies, primarily a porous spherical grains with a grain size distribution from 40 to 150 nm and another, rose-like structures with size distribution from 30 to 200 nm, based on different deposition techniques utilized. The elemental depth profiles across the films were investigated by the secondary-ion mass spectrometry (SIMS). Different gas sensing responses of all ZnO films were obtained for both propane and carbon monoxide gases, at different gas concentrations and operating temperatures. The highest sensing response (~6) for undoped ZnO films was obtained for films deposited by ultrasonic spray pyrolysis (USP). Nevertheless, the highest sensing response (~4 × 104) for doped ZnO films was obtained for films deposited by dip coating method. The behavior of sensing responses is explained in detail based on the morphological properties and the amount of Ni impurities incorporated into the crystal lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.