Abstract

Nano-structured glass-ceramics comprising In2O3 nanocrystals (quantum dots) in a silica glassy matrix have been synthesized for the first time to our knowledge, by thermal treatment of sol-gel precursor glasses with different concentrations of In2O3. Undoped and Eu(3+)-doped samples have been obtained and characterized. By means of X-ray Diffraction and Transmission Electron Microscopy analysis, the precipitation of In2O3 cubic crystalline nanoparticles was confirmed. The mean radii of these nanocrystals, from 1 to 4 nm, are comparable to the exciton Bohr radius, corresponding to wide band-gap semiconductor quantum-dots. Under interband UV excitation of the nanocrystals, a broad visible emission is observed in the undoped samples. Meanwhile, the Eu(3+)-doped samples only show emission from these ions which are efficiently excited by energy transfer from the In2O3, nanocrystals. Selective excitation of the Eu3+ ions allow us to discern those remaining in the silica glassy matrix from the ones located in the interface SiO2-In2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call