Abstract

During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned ‘ventral’ stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-β-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.

Highlights

  • Bronchial asthma is one of the most common chronic diseases throughout the world and its incidence has been continuously increasing in recent decades

  • We have shown previously that human bronchial fibroblasts (HBFs) derived from asthmatic patients develop prominent “ventral” stress fibers [15, 17]

  • Previous studies have suggested that TGF-β1-treated fibroblasts containing α-smooth muscle actin (α-SMA)+ stress fibers are characterized by enhanced contractility and generate relatively high traction forces [6, 43]

Read more

Summary

Introduction

Bronchial asthma is one of the most common chronic diseases throughout the world and its incidence has been continuously increasing in recent decades. Asthma progression is thought to depend on hyperplasia, hypertrophy and phenotypic transitions of bronchial epithelial cells, smooth muscle cells and fibroblasts. These processes are accompanied by increased extracellular matrix (ECM) deposition in asthmatic bronchi [2] and are the fundamental factors associated with clinical symptoms of asthma, in particular with airway constriction [1]. Discrete myofibroblastic lineages are thought to participate in the formation of sub-epithelial fibrosis and bronchial wall remodeling [3,4] They develop in asthmatic bronchi mainly as a consequence of pathologic TGF-β—induced fibroblast-to-myofibroblast transition (FMT). Myofibroblasts display phenotypes similar to smooth muscle cells, with de novo expression of α-smooth muscle actin (α-SMA) and its incorporation into highly contractile microfilament bundles (stress fibers) [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call