Abstract
Exogenous AHLs are gradually reported to facilitate biofilm growth, however, whether they play a universal role in promoting biofilm formation and pollutants removal remains to be investigated. The pollutant removal, biofilm properties, microbial community and the distribution of AHLs were investigated in three lab-scale MBBRs by continuous dosing 100 nM N-Hexanoyl-L-homoserine lactone (C6-HSL) and N-Octanoyl-L-homoserine lactone (C8-HSL) in synthetic wastewater under normal nutrition (40 mg/L NH4+-N with C/N = 20). Results showed that adding AHLs didn't affect organics removal and exogenous C6-HSL even significantly suppressed NH4+-N removal by 0.44–20.29% after 16 days (p < 0.05). The introduction of AHLs both facilitated biofilm growth and extracellular polymeric substances secretion while suppressed ATP production especially during the stable operation period, with 48.96% by C6-HSL (p < 0.05) and 27.25% by C8-HSL, respectively. Exogenous AHLs inhibited the proliferation of Chryseobacterium, resulting in improvement in biofilm growth and it probably mediated ATP synthesis through regulating the release of 3OHC12-HSL in aqueous phase. Organics removal and biofilm growth were mainly attributed to the combined actions of multitudinous AHLs in biofilm phase rather than that in aqueous phase. The counterintuitive conclusions obtained in this study highlighted the importance of legitimately applying exogenous AHLs to accelerate biofilm formation and the start-up of MBBR in wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.