Abstract
Changes in the environment, such as landslides, tsunamis, rising or falling sea levels in coastal oceans, and neighboring land surfaces, significantly impact the structure of the ocean and human life. These natural climate-change processes have unanticipated and deadly consequences for coastal areas. The continental margin part of the ocean has recently attracted the most attention because of the mineral sources and human activities such as exploration, navigation, recreation, and fishing. The continental margin stretches from the coastal mountains and plains to continental shelf, slope, and rise, where terrestrial and maritime means meet. In this paper, we propose a reconfigurable underwater optical wireless sensor network (UOWSN) based on underwater wireless optical communication (UWOC) to monitor and discover continental margin ore deposits. In this proposed system, a transceiver on the underwater wireless autonomous vehicle moving around the different regions of the continental margin collects information and transmits it to the seashore control station once it reaches the ocean surface. We investigated the outage probability and average bit error rate of the proposed system at the continental margin and used coding techniques to mitigate the effects of high turbulence in the continental shelf region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.