Abstract

Side-scan sonar (SSS) images present unique challenges to computer vision due to their lower resolution, smaller targets, and fewer features. Although the mainstream backbone networks have shown promising results on traditional vision tasks, they utilize traditional convolution to reduce the dimensionality of feature maps, which may cause information loss for small targets and decrease performance in SSS images. To address this problem, based on the yolov8 network, we proposed a new underwater target detection model based on upsampling and downsampling. Firstly, we introduced a new general downsampling module called shallow robust feature downsampling (SRFD) and a receptive field convolution (RFCAConv) in the backbone network. Thereby multiple feature maps extracted by different downsampling techniques can be fused to create a more robust feature map with a complementary set of features. Additionally, an ultra-lightweight and efficient dynamic upsampling module (Dysample) is introduced to improve the accuracy of the feature pyramid network (FPN) in fusing different levels of features. On the underwater shipwreck dataset, our improved model’s mAP50 increased by 4.4% compared to the baseline model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.